Extensions 1→N→G→Q→1 with N=C325SD16 and Q=C2

Direct product G=N×Q with N=C325SD16 and Q=C2
dρLabelID
C2×C325SD1648C2xC3^2:5SD16288,480

Semidirect products G=N:Q with N=C325SD16 and Q=C2
extensionφ:Q→Out NdρLabelID
C325SD161C2 = C241D6φ: C2/C1C2 ⊆ Out C325SD16484+C3^2:5SD16:1C2288,442
C325SD162C2 = Dic12⋊S3φ: C2/C1C2 ⊆ Out C325SD16484C3^2:5SD16:2C2288,449
C325SD163C2 = D1218D6φ: C2/C1C2 ⊆ Out C325SD16244+C3^2:5SD16:3C2288,473
C325SD164C2 = Dic6.29D6φ: C2/C1C2 ⊆ Out C325SD16484C3^2:5SD16:4C2288,481
C325SD165C2 = S3×C24⋊C2φ: C2/C1C2 ⊆ Out C325SD16484C3^2:5SD16:5C2288,440
C325SD166C2 = D6.3D12φ: C2/C1C2 ⊆ Out C325SD16484+C3^2:5SD16:6C2288,456
C325SD167C2 = Dic63D6φ: C2/C1C2 ⊆ Out C325SD16488+C3^2:5SD16:7C2288,573
C325SD168C2 = D125D6φ: C2/C1C2 ⊆ Out C325SD16248+C3^2:5SD16:8C2288,585
C325SD169C2 = Dic6.10D6φ: C2/C1C2 ⊆ Out C325SD16488+C3^2:5SD16:9C2288,593
C325SD1610C2 = Dic6.22D6φ: C2/C1C2 ⊆ Out C325SD16488+C3^2:5SD16:10C2288,596
C325SD1611C2 = Dic6⋊D6φ: C2/C1C2 ⊆ Out C325SD16248+C3^2:5SD16:11C2288,578
C325SD1612C2 = Dic6.20D6φ: C2/C1C2 ⊆ Out C325SD16488+C3^2:5SD16:12C2288,583
C325SD1613C2 = S3×Q82S3φ: C2/C1C2 ⊆ Out C325SD16488+C3^2:5SD16:13C2288,586
C325SD1614C2 = D12.14D6φ: C2/C1C2 ⊆ Out C325SD16488+C3^2:5SD16:14C2288,598
C325SD1615C2 = D12.27D6φ: trivial image484C3^2:5SD16:15C2288,477


׿
×
𝔽